2019-07-01 12:00 - Messages

Appareils de protection respiratoire et risques biologiques

Dans certains secteurs d'activité (soins, laboratoires, biotechnologies, élevage, abattoirs, assainissement...), les personnels peuvent être exposés à des agents biologiques transmissibles par voie respiratoire. Cette fiche indique les critères de choix et les conditions d'utilisation des appareils de protection respiratoire (APR).

Source: http://www.inrs.fr/media.html?refINRS=ED%20146

ASTM F2101 - Standard Test Method for Evaluating the Bacterial Filtration Efficiency (BFE) of Medical Face Mask Materials, Using a Biological Aerosol of Staphylococcus aureus

This test method is used to measure the bacterial filtration efficiency (BFE) of medical face mask materials, employing a ratio of the upstream bacterial challenge to downstream residual concentration to determine filtration efficiency of medical face mask materials.
This test method is a quantitative method that allows filtration efficiency for medical face mask materials to be determined. The maximum filtration efficiency that can be determined by this method is 99.9 %.
This test method does not apply to all forms or conditions of biological aerosol exposure. Users of the test method should review modes for worker exposure and assess the appropriateness of the method for their specific applications.
This test method evaluates medical face mask materials as an item of protective clothing but does not evaluate materials for regulatory approval as respirators. If respiratory protection for the wearer is needed, a NIOSH-certified respirator should be used. Relatively high bacterial filtration efficiency measurements for a particular medical face mask material does not ensure that the wearer will be protected from biological aerosols, since this test method primarily evaluates the performance of the composite materials used in the construction of the medical face mask and not its design, fit, or facial-sealing properties.

Source: https://www.astm.org/Standards/F2101.htm

In Search of a Performing Seal: Rethinking the Design of Tight-Fitting Respiratory Protective Equipment Facepieces for Users With Facial Hair

Background: Air-purifying, tight-fitting facepieces are examples of respiratory protective equipment and are worn to protect workers from potentially harmful particulate and vapors. Research shows that the presence of facial hair on users' face significantly reduces the efficacy of these devices. This article sets out to establish if an acceptable seal could be achieved between facial hair and the facepiece. The team also created and investigated a low-cost “pressure testing” method for assessing the efficacy of a seal to be used during the early design process for a facepiece designed to overcome the facial hair issue
Methods: Nine new designs for face mask seals were prototyped as flat samples. A researcher developed a test rig, and a test protocol was used to evaluate the efficacy of the new seal designs against facial hair. Six of the seal designs were also tested using a version of the conventional fit test. The results were compared with those of the researcher-developed test to look for a correlation between the two test methods.
Results: None of the seals performed any better against facial hair than a typical, commercially available facepiece. The pressure testing method devised by the researchers performed well but was not as robust as the fit factor testing.
Conclusion: The results show that sealing against facial hair is extremely problematic unless an excessive force is applied to the facepiece's seal area pushing it against the face. The means of pressure testing devised by the researchers could be seen as a low-cost technique to be used at the early stages of a the design process, before fit testing is viable.

Source:  Meadwell, J., Paxman-Clarke, L., Terris, D. et Ford, P. (2019). Safety and Health at Work.

Environmental and Personal Protective Equipment Contamination during Simulated Healthcare Activities

Providing care to patients with an infectious disease can result in the exposure of healthcare workers (HCWs) to pathogen-containing bodily fluids. We performed a series of experiments to characterize the magnitude of environmental contamination—in air, on surfaces and on participants—associated with seven common healthcare activities. The seven activities studied were bathing, central venous access, intravenous access, intubation, physical examination, suctioning and vital signs assessment. HCWs with experience in one or more activities were recruited to participate and performed one to two activities in the laboratory using task trainers that contained or were contaminated with fluorescein-containing simulated bodily fluid. Fluorescein was quantitatively measured in the air and on seven environmental surfaces. Fluorescein was quantitatively and qualitatively measured on the personal protective equipment (PPE) worn by participants. A total of 39 participants performed 74 experiments, involving 10–12 experimental trials for each healthcare activity. Healthcare activities resulted in diverse patterns and levels of contamination in the environment and on PPE that are consistent with the nature of the activity. Glove and gown contamination were ubiquitous, affirming the value of wearing these pieces of PPE to protect HCW's clothing and skin. Though intubation and suctioning are considered aerosol-generating procedures, fluorescein was detected less frequently in air and at lower levels on face shields and facemasks than other activities, which suggests that the definition of aerosol-generating procedure may need to be revised. Face shields may protect the face and facemask from splashes and sprays of bodily fluids and should be used for more healthcare activities.

Source: Weber, R. T., Phan, L. T., Fritzen-Pedicini, C. et Jones, R. M. (2018). Annals of work exposures and health.

Assessment of respirator fit capability test criteria for full-facepiece air-purifying respirators

An ASTM International subcommittee on Respiratory Protection, F23.65 is currently developing a consensus standard for assessing respirator fit capability (RFC) criteria of half-facepiece air-purifying particulate respirators. The objective of this study was to evaluate if the test methods being developed for half-facepiece respirators can reasonably be applied to nonpowered full-facepiece–air-purifying respirators (FF–APR).
Benchmark RFC test data were collected for three families of FF–APRs (a one-size-only family, a two-size family, and a three-size family). All respirators were equipped with P100 class particulate filters. Respirators were outfitted with a sampling probe to collect an in-mask particle concentration sample in the breathing zone of the wearer. Each of the six respirator facepieces was tested on the National Institute for Occupational Safety and Health 25-subject Bivariate Panel. The RFC test assessed face seal leakage using a PortaCount fit test. Subjects followed the corresponding Occupational Safety and Health Administration-accepted fit test protocol.
Two donnings per subject/respirator model combination were performed. The panel passing rate (PPR) (number or percentage of subjects in the panel achieving acceptable fit on at least one of two donnings) was determined for each respirator family at specified fit factor passing levels of 500, 1,000, and 2,000. As a reasonable expectation based on a previous analysis of alpha and beta fit test errors for various panel sizes, the selected PPR benchmark for our study was >75%.
At the fit factor passing level of 500 obtained on at least one of two donnings, the PPRs for three-, two-, and one-size families were 100, 79, and 88%, respectively. As the fit factor passing criterion increased from 500 to 1,000 or 2,000, PPRs followed a decreasing trend. Each of the three tested families of FF–APRs are capable of fitting ≥75% of the intended user population at the 500 fit factor passing level obtained on at least one of two donnings. The methods presented here can be used as a reference for standards development organizations considering developing RFC test requirements.

Source: Bergman, M. S., Zhuang, Z., Xu, S. S., Rengasamy, S., Lawrence, R. B., Boutin, B. et Harris, J. R. (2019). Journal of Occupational and Environmental Hygiene, 16(7), 489-497.

FD CEN/TR 14560 - Guide pour la sélection, l'utilisation, l'entretien et la maintenance des vêtements de protection contre la chaleur et la flamme

Le présent document fournit des recommandations aux employeurs, aux utilisateurs et aux acheteurs en ce qui concerne les exigences relatives à la sélection, l'utilisation, l'entretien et la maintenance des vêtements de protection contre la chaleur et la flamme, et il est conforme à la législation européenne. Le présent document ne traite pas de façon exhaustive tous les problèmes de sécurité associés à l'utilisation d'équipements conformes de protection individuelle contre la chaleur, la flamme et les autres risques connexes. Il est important de ne pas considérer le présent document comme traitant l'ensemble des questions de sécurité associées à l'utilisation du présent document par des installations d'essai ou de réparation. Il incombe aux personnes et aux organismes qui utilisent ce document et tout autre rapport technique sur les normes relatives aux EPI de : réaliser une évaluation des risques ; sélectionner les vêtements de protection et autres EPI ; s'assurer qu'ils fournissent une protection complète, seulement lorsque la compatibilité a été évaluée, y compris une compréhension du lieu et de l'environnement de travail afin de déterminer les propriétés des vêtements de protection contre la chaleur et la flamme, en vue d'établir des pratiques en matière de santé et de sécurité ; et déterminer l'applicabilité des limitations règlementaires avant d'utiliser le présent rapport technique pour toute conception, fabrication et essai. Le présent guide est destiné à tous les utilisateurs finaux qui peuvent être confrontés à des risques liés à la chaleur et à la flamme, bien qu'il se concentre sur les quatre premiers utilisateurs de la liste ci-dessous : industries pétrochimique et chimique ; soudeurs et fonderies ; services publics (électricité, gaz, eau) ; sapeurs-pompiers et services de secours ; sports (sports mécaniques, navigation de plaisance, etc.) ; forces de sécurité (armée, police et organismes privés) . Il est important qu'aucune partie des présentes n'empêche une autorité d'aller au-delà des exigences minimales indiquées dans les normes correspondantes.

Source: https://www.boutique.afnor.org/norme/fd-cen-tr-14560/guide-pour-la-selection-l-utilisation-l-entretien-et-la-maintenance-des-vetements-de-protection-contre-la-chaleur-et-la-flamme/article/928843/fa196289

Système de protection individuelle intelligent (SPII) : définition, analyse, choix

L'émergence de systèmes de protection individuelle dits " intelligents " (SPII) soulève de nouvelles questions vis-à-vis de la prévention des risques professionnels. Si les fabricants s'interrogent sur les exigences de sécurité applicables lors de la conception de tels équipements, les entreprises utilisatrices se questionnent également sur les performances et les limites de ces équipements ainsi que sur d'éventuels risques liés à leur utilisation.
Afin de clarifier les échanges entre les parties prenantes, cet article propose dans un premier temps, une définition d'un SPII. Il présente ensuite des éléments d'analyse permettant de guider les futurs utilisateurs et employeurs dans leur choix lors de l'acquisition de ce type de produit ainsi que les services de santé au travail (SST) dans le conseil donné aux employeurs.

Source: Marchal, P. et Baudoin, J. (2019). Références en santé au travail (158), 117-124.

Abonnement courriel

Messages récents


Mots-Clés (Tags)