Predictive multiscale computational model of shoe-floor coefficient of friction

Understanding the frictional interactions between the shoe and floor during walking is critical to prevention of slips and falls, particularly when contaminants are present. A multiscale finite element model of shoe-floor-contaminant friction was developed that takes into account the surface and material characteristics of the shoe and flooring in microscopic and macroscopic scales. The model calculates shoe-floor coefficient of friction (COF) in boundary lubrication regime where effects of adhesion friction and hydrodynamic pressures are negligible. The validity of model outputs was assessed by comparing model predictions to the experimental results from mechanical COF testing. The multiscale model estimates were linearly related to the experimental results (p<0.0001). The model predicted 73% of variability in experimentally-measured shoe-floor-contaminant COF. The results demonstrate the potential of multiscale finite element modeling in aiding slip-resistant shoe and flooring design and reducing slip and fall injuries.

Source: Moghaddam, S. R. M., Acharya, A., Redfern, M. S., et Beschorner, K. E. (2018). Journal of biomechanics, 66, 145-152.
http://dx.doi.org/10.1016/j.jbiomech.2017.11.009

Abonnement courriel

Messages récents

Catégories

Mots-Clés (Tags)

Blogoliste

Archives