2019-01-01 12:00 - Messages

Continuing to Protect the NANOTECHNOLOGY WORKFORCE: NIOSH Nanotechnology Research Plan for 2018–2025

Nanotechnology and the commercialization of products and devices containing engineered nanomaterials could help address critical global problems concerning energy, transportation, pollution, health, and food. The potential benefits of nanotechnology are immense. However, scientists must also address concerns about the potential adverse human health effects of this technology. Timely, targeted research must further define the hazards, exposures, and risks and provide guidance for the safe handling of nanomaterials. A concerted effort by industry, academia, labor, environmental health and safety professionals, and government can fill the knowledge gaps in an accessible process that coincides with development of this new technology. NIOSH is playing an active part in this process by supporting the development of a broad spectrum of research and prevention strategies for health and safety hazards related to nanotechnology. In a series of reports [NIOSH 2007, 2010, 2012a], NIOSH has summarized its progress in conducting nanotechnology research and recommending risk management strategies (see http://www.cdc.gov/niosh/topics/nanotech/). NIOSH investigators have identified adverse health effects in animals exposed to various engineered nanomaterials; assessed worker exposures; initiated epidemiologic research; and provided guidance on occupational exposure limits (OELs), control technologies, and medical surveillance. Yet, there are still many questions. Advanced synthesis techniques yield nanomaterials with a practically limitless combination of physicochemical traits, each of which could have unique toxicology and exposure risks. There is need for an expeditious approach for controlling exposure to the continuously growing number of nanomaterials used both in science and in commerce. Moreover, the advanced nanomaterials under development may have additional potentially hazardous characteristics that will need addressing in the near future [Murashov et al. 2012].

Source : https://www.cdc.gov/niosh/docs/2019-116/pdfs/2019-116.pdf?id=10.26616/NIOSHPUB2019116
NIOSH Skin Notation Profiles: Atrazine

As the largest organ of the body, the skin performs multiple critical functions, such as serving as the primary barrier to the external environment. For this reason, the skin is often exposed to potentially hazardous agents, including chemicals, which may contribute to the onset of a spectrum of adverse health effects ranging from localized damage (such as irritant contact dermatitis and corrosion) to induction of immune-mediated responses (such as allergic contact dermatitis and pulmonary responses), or systemic toxicity (such as neurotoxicity and hepatotoxicity). Understanding the hazards related to skin contact with chemicals is a critical component of modern occupational safety and health programs.This skin notation profile presents (1) a brief summary of epidemiological and toxicological data associated with skin contact with atrazine and (2) the rationale behind the hazard-specific skin notation (SK) assignment for atrazine. The SK assignment is based on the scientific rationale and logic outlined in the Current Intelligence Bulletin 61: A Strategy for Assigning New NIOSH Skin Notations [NIOSH 2009]. The summarized information and health hazard assessment are limited to an evaluation of the potential health effects of dermal exposure to atrazine. A literature search was conducted through February 2018 to identify information on atrazine, including but not limited to data relating to its toxicokinetics, acute toxicity, repeated-dose systemic toxicity, carcinogenicity, biological system/function-specific effects (including reproductive and developmental effects and immunotoxicity

Source : https://www.cdc.gov/niosh/docs/2019-117/default.html

INSPQ/Bulletin d'information toxicologique, volume 34, numéro 2

Ce numéro porte sur la toxicologie en milieu de travail. On y trouve, entre autres :

Source : https://www.inspq.qc.ca/toxicologie-clinique/numero-thematique-sur-la-toxicologie-en-milieu-de-travail

Dampness and Mold Assessment Tool – General Buildings

The health of those who live, attend school, or work in damp buildings has been a growing concern through the years due to a broad range of reported building-related symptoms and illnesses. Research has found that people who spend time in damp buildings are more likely to report health problems such as these:

  • Respiratory symptoms (such as in nose, throat, lungs)
  • Development or worsening of asthma
  • Hypersensitivity pneumonitis (a rare lung disease caused by an immune system response to
    repeated inhalation of sensitizing substances such as bacteria, fungi, organic dusts, and chemicals)
  • Respiratory infections
  • Allergic rhinitis (often called “hay fever”)
  • Bronchitis
  • Eczema

Source : https://www.cdc.gov/niosh/docs/2019-115/pdfs/2019-115.pdf?id=10.26616/NIOSHPUB2019115

Prévalences de l’exposition des viticulteurs aux pesticides arsenicaux entre 1979 et 2001

L'évaluation rétrospective des expositions aux pesticides des travailleurs agricoles est une démarche nécessaire pour comprendre et établir des liens entre leurs activités tout le long de leur carrière et de potentielles pathologies graves telles les cancers ou les maladies neurodégénératives. Les outils fiables soutenus par une méthodologie précise et structurée sont peu nombreux.

L'arsenic inorganique est considéré comme un cancérogène avéré pour l'homme par le Circ (Centre international de recherche sur le cancer) et au niveau de l'union européenne ; les principaux dérivés arsenicaux inorganiques utilisés en agriculture sont l'arséniate de plomb, l'arséniate de calcium et l'arsénite de soude. Ils ont une action fongicide et insecticide. L'arsénite de sodium a été particulièrement utilisé sur la vigne dans les traitements contre les maladies du bois.

À travers la construction d'une matrice cultures expositions (MCE) vigne-pesticides arsenicaux, nous avons évalué l'utilisation des dérivés arsenicaux en viticulture en France métropolitaine et déterminé une prévalence d'usage de ceux-ci de 1945 à 2001, date de leur interdiction. Cette prévalence d'usage a permis une estimation de la prévalence d'exposition aux pesticides arsenicaux qui varie de 20 à 35% en viticulture pour les personnes présentes au sein des exploitations professionnelles de la vigne. Le croisement de cette MCE avec les recensements agricoles (RA) de 1979, 1988 et 2000 fournit un nombre d'exposés aux pesticides arsenicaux parmi les travailleurs viticoles pour chaque année du recensement, ainsi qu'un descriptif (âge, sexe, temps de travail etc.) de cette population.

Nos travaux permettent d'estimer, que sur les périodes considérées, entre 60 000 et 100 000 personnes ont travaillé sur des exploitations agricoles utilisant des pesticides arsenicaux pour le traitement de la vigne. Ces personnes travaillaient dans des exploitations viticoles ayant utilisé, d'après la MCE vigne-pesticides arsenicaux, près de 15 kg d'arsenic en 1979, 18,4 kg en 1988 et 26,8 kg en 2000. Ces chiffres sont des quantités moyennes d'arsenic utilisées par exploitation et il est important de noter que l'augmentation de ces quantités n'est pas due à une augmentation de la dose par hectare mais à une surface moyenne de vigne par exploitation qui augmente : 4,2 ha en 1979, 5,3 ha en 1988 et 7,6 ha en 2000.

Source: http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Travail-et-sante/2018/Prevalences-de-l-exposition-des-viticulteurs-aux-pesticides-arsenicaux-entre-1979-et-2001

 

Abonnement courriel

Messages récents

Catégories

Mots-Clés (Tags)

Blogoliste

Archives